Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1147668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064130

RESUMO

Triple-negative breast cancer (TNBC) is known as the most difficult molecular subtype of breast cancer to treat. Recent studies revealed that cancer stem cells (CSCs) play a critical role in TNBC recurrence and metastasis. In this study, we developed a recombinant replication-deficient adenoviral vector (Ad-CD44-N-HIF-3α4), which contains a gene encoding a synthetic Notch (synNotch) receptor composed of the extracellular domain of CD44 (CD44-ECD) and the hypoxia-inducible factor (HIF)-3α4 connected by the Notch core regulatory region. CD44 is a transmembrane glycoprotein and known as a CSC marker in breast cancer and other malignancies. HIF-3α4 is a dominant-negative regulator of HIF-1α and HIF-2α and inhibits hypoxia-inducing effect. Both CD44 and HIF signals contribute cancer stemness and maintaining CSCs in breast cancer. The CD44-ECD in the synNotch receptor acts as the CD44 decoy receptor, and after a ligand such as a hyaluronic acid binds to the CD44-ECD, HIF-3α4 is released from the Notch core domain. We performed an in vivo study using a mouse xenograft model of MDA-MB-231, a highly invasive TNBC cell, and confirmed the significant antitumor activity of the intratumoral injections of Ad-CD44-N-HIF3α4. Our findings in this study warrant the further development of Ad-CD44-N-HIF3α4 for the treatment of patients with TNBC.

2.
Sci Rep ; 10(1): 17464, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060772

RESUMO

In this study we undertook a novel combination therapy using rAd-p53 in situ gene therapy and immunotherapy with immune checkpoint inhibitor (ICI) anti-PD-1 antibody for urogenital cancers. Three mouse syngeneic tumor cell lines, TRAMP-C2 (prostate cancer derived from C57BL/6 mice), MBT-2 (bladder cancer derived from C3H mice) and Renca (kidney cancer derived from BALB/c mice) were used in this study. The highest coxsackie and adenovirus receptor (CAR) mRNA expression was observed in TRAMP-C2 cells, followed by Renca and then MBT-2 cells. Consistent with the CAR expressions, rAd-p53 at 160 multiplicity of infection (MOI) significantly inhibited the cell proliferation of TRAMP-C2 and Renca cells, but not MBT-2 cells. In in vivo experiments, the combination of intratumoral injections of rAd-p53 (1 × 109 plaque-forming units) every other day and intraperitoneal injections of anti-mouse PD-1 antibody (200 µg) twice a week suppressed tumor growth and prolonged survival compared to rAd-p53 or anti-PD-1 antibody monotherapy in both the TRAMP-C2 and Renca models. Our results encourage the clinical development of combination therapy comprised of in situ gene therapy with rAd-p53 and immunotherapy with an ICI anti-PD-1 antibody for urogenital cancers.


Assuntos
Antineoplásicos/uso terapêutico , Genes p53 , Terapia Genética/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Neoplasias Urogenitais/genética , Neoplasias Urogenitais/terapia , Adenoviridae , Animais , Linhagem Celular Tumoral , Isoenxertos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , RNA Mensageiro/metabolismo
3.
Cancer Gene Ther ; 26(11-12): 388-399, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30607005

RESUMO

Prostate cancer is one of the most common cancers in men. The overactivation of IL-6/JAK/STAT3 signaling and silencing of SOCS3 are frequently observed in prostate cancer. In the present study we undertook to develop Ad-SOCS3 gene therapy for the treatment of prostate cancer and also investigated whether Ad-SOCS3 increased sensitivity to NK cells. We demonstrated that Ad-SOCS3 could significantly inhibit growth of castration-resistant prostate cancer (CRPC) cell lines expressing pSTAT3, DU-145 (at 10, 20, and 40 MOI), and TRAMP-C2 (at 40 MOI), but not the PC-3 CRPC cell line with the STAT3 gene deleted. Ad-SOCS3 (40 MOI) could suppress IL-6 production in DU-145 cells and PD-L1 expression induced by IFN-γ in TRAMP-C2 cells, and increased the NK cell sensitivity of both TRAMP-C2 and DU-145 cells. In the DU-145 mouse xenograft tumor model, intratumoral injections (twice/week for 3 weeks) of 1 × 108 pfu of Ad-SOCS3 significantly inhibited tumor growth and combining the Ad-SOCS3 treatment with intratumoral injections (once/week for 2 weeks) of 1 × 107 human NK cells showed the highest tumor growth inhibitory effect. These results suggested that a combination of Ad-SOCS3 gene therapy and NK cell immunotherapy could be a powerful treatment option for advanced CRPC overexpressing pSTAT3.


Assuntos
Adenoviridae/genética , Expressão Gênica , Vetores Genéticos/genética , Células Matadoras Naturais/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Animais , Apoptose/genética , Biomarcadores Tumorais , Ciclo Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos , Interleucina-6/metabolismo , Células Matadoras Naturais/imunologia , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/metabolismo , Transdução de Sinais , Transdução Genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...